ACL-1264

Seat No.

B. Sc. (Sem. I) Examination

November / December – 2016

Mathematics: Paper-CC-MAT-111

Time: 3 Hours!

[Marks: 70

Instructions: (1) All Questions are Compulsory.

(2) The figures to the right indicate marks of the corresponding question.

1 (a) State and Prove: Leibnitz's Theorem

[7]

(a) Expand the function $f(x)=\log(1+x)$, $-1 < x \le 1$ in ascending powers of x.

[7]

https://www.hnguonline.com

https://www.hnguonline.com

(b) Attempt any two.

(1) If $I_n = \frac{d^n}{dx^n} (x^n \log(x))$ then prove that $I_n = nI_{n-1} + (n-1)!$ and from it deduce

$$I_n = n! \left[log x + 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} \right].$$

- (2) Using Cauchy mean value theorem prove that bb-aa=cc (blogb-aloga) (0<a<c<b)
- (3) Exappand $tan^{-1}x$ in ascending powers of x.
- 2(a) Obtain formula for length of arc of continuous curve y=f(x) between lines x=a and x=b.

(a) Obtain reduction formula for $\int sin^m x cos^n x dx$, neN and hence deduce reduction formula for $\int_{0}^{\frac{\pi}{2}} sin^{m}xcos^{n}xdx$. [7]

(b) Attempt any two.

[8]

[7]

- (1) Evaluate: $\int_0^1 x^4 (2-x^2)^{3/2} dx$
- (2) Evaluate: $\lim_{n\to\infty} \left[\left(1 + \frac{1^2}{n^2} \right) \left(1 + \frac{2^2}{n^2} \right)^2 \left(1 + \frac{3^2}{n^2} \right)^3 \dots \left(1 + \frac{n^2}{n^2} \right)^n \right]^{1/n^2}$
- (3) Find the volume of sphere of radius a

3(a) For vectors \overline{a} , \overline{b} and \overline{c} prove that (1) $\overline{a} \times (\overline{b} \times \overline{c}) = (\overline{a} \cdot \overline{c})\overline{b} - (\overline{a} \cdot \overline{b})\overline{c}$

$$(2)(\bar{a} \times \bar{b}) \times \bar{c} = (\bar{a} \cdot \bar{c})\bar{b} - (\bar{b} \cdot \bar{c})\bar{a}$$
 [7]

(a) Prove that: Curl $(\Phi \vec{F}) = (\text{grad}\Phi) \times \vec{F} + \Phi(\text{curl}\vec{F})$, where Φ is a scalar and \vec{F} is a vector function.

ACL-1264]

[Contd...

https://www.hnguonline.com

https://www.hnguonline.com

(b) Attempt any two.

[8]

[8]

[10]

https://www.hnguonline.com

- (1) Find reciprocal vector set for the vector set {(1,1,-1), (1,-1,1), (-1,1,1)}
- (2) Find divergence and curl of a vector function $\vec{F} = xyz\vec{\imath} + 3x^2y\vec{\jmath} + (xz^2 y^2z)\vec{k}$ at point (2,-1,1).
- (3) Transform the equation $x^2+y^2=z^2$ into cylindrical and spherical co-ordinates.
- 4 (a) Derive the equation of a tangent plane of sphere $x^2+y^2+z^2=a^2$ at point (α,β,γ) . [7]

- (a) Equation of right circular cone having vertex (α, β, γ) , axis $\frac{x-\alpha}{i} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$ and semi vertical angle θ in R^3 . $(\theta \neq 0, \theta \neq \pi/2)$
- (b) Attempt any two.
- (1) Find the value of k, if plane kx + y 2z = 9 touches the sphere $x^2 + y^2 + z^2 = 9$.
- (2) Define Orthogonal Sphere. Prove that two sphere $x^{2} + y^{2} + z^{2} - 2x + 4y - 4 = 0$ and $x^{2} + y^{2} + z^{2} - 6y + 4z8 = 0$ are orthogonal.
- (3) Find the equation of right circular cylinder having guiding curve x+y+z=-3, $x^2+y^2+z^2+3x+3y+3z=0$.
- 5 Attempt any five.

(1) If $y = \frac{x}{x^2 - 2x - 8}$, $x \neq 2$, -4 then find y_n .

- (2) Find the coefficient of x^4 in the expansion of $\log(\cos x)$.
- (3) Evaluate : $\int_0^{\pi} \sin^3(\frac{\theta}{2}) d\theta$.
- (4) Find the limit of series $\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \cdots + \frac{1}{n+n} + \cdots$
- (5) For vectors \bar{a} , \bar{b} , \bar{c} , \bar{d} prove that $\left(\bar{a}\times\bar{b}\right)\cdot\left(\bar{c}\times\bar{d}\right)+\left(\bar{b}\times\bar{c}\right)\cdot\left(\bar{a}\times\bar{d}\right)+\left(\bar{c}\times\bar{a}\right)\cdot\left(\bar{b}\times\bar{d}\right)=0.$
- (6) Prove that $\nabla r^2 = 2\bar{r}$, where $\bar{r} = x\bar{\imath} + y\bar{\jmath} + z\bar{k}$ and $r = |\bar{r}|$.
- (7) Find the equation of sphere whose extremitles of diameter are (3,4,0) and (2,3,-1).
- (8) Define: Central Conicolds, Elipsoid.

ACL-1264]

2

https://www.hnguonline.com

1 6930 1