

CAF-123

Seat No.

B. Sc. (Sem. V) Examination December - 2021 Mathematics: Paper - CCMAT-501 (Group Theory)

Time 3 Hours

[Total Marks 70

Instructions: (1) All questions are compulsory

- (ii) Numbers to the right indicates the marks of each question.
- (a) Show that the set of four transformations 1 f_1, f_2, f_3, f_4 defined on the set of complex numbers as, $f(z) = \overline{z}, f_2(z) = z, f_3(z) = \frac{1}{z}, f_4(z) = \frac{1}{z}$ forms a finite abelian group of order four wir to compositions of functions

OR

- Iff H is a subgroup of a finite group G then 6 prove that O(II)/O(G)
- (b) Attempt any Two

12

6

- (11) Define order of an element of a group G If a any element of group G then show that
 - (i) $O(a^k) \cdot O(a)$, for some integer k
 - (ii) If O(a) = n and p is prime to n, then $O(a^p) = n$
- (2) If G = (Z, +) and H = nZ, then obtain all right cosets of H in G and find the index of H in G

- (3) State and prove the Euler's theorem. If P is an odd prime then show that $1^{P-1} + 2^{P-1} + \dots + (P-1)^{P-1} - (-1) \mod P$
- Define Normal subgroup. If a cyclic subgroup 2 H of a group G is normal in G then show that any subgroup of G is also normal in G

· OR

- Define the term 'Permutation' Prove that out of n! permutations on n symbols, $\frac{n!}{2}$ are even and $\frac{n!}{2}$ are odd permutations
- Attempt any Two:

12

- (1) Define Transposition and Disjoint cycles Prove that any two disjoint cycles in S_n are commutative https://www.hnguonline.com
- (2) Let N be a subgroup of group G such that $a^2 \in N, \forall a \in G$, then show that N is normal subgroup of G.
- (3) Let $G = C \{0\}$ and

$$G' = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} / a, b \in R, a^2 + b^2 \neq 0 \right\} \quad \text{be}$$

two groups under multiplication. Define

$$f: G \to G'$$
 by $f(Z) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, for

 $Z = a + ib \in C - \{0\}$ then show that f is an isomorphism

https://www.hnguonline.com

CAF-1231

[Contd...

16

O(G) in Prove that for every positive divisor m of n, $H = \left\langle \frac{n}{a^m} \right\rangle$ is a unique subgroup of G

7

12

[Contd...

OR

groups. Define a mapping $\phi: G \to G'$ as $\phi(k) = [k], k \in G$, then show that ϕ is an onto homomorphism with kernel $K_{\phi} = nZ$. Deduce that $Z/nZ = (Z_n, +_n)$.

(b) Attempt any Two:

- If G≠{e} is a group having no proper subgroup, then show that G is a cyclic group of prime order.
- (2) Prove that every subgroup of a cyclic group is cyclic
- (3) Show that if G is a cyclic group of prime order, then a homomorphism $\phi: G \to G'$ is either an isomorphism or $\phi(a) = e$, for each $a \in G$.

(1) If a is any element of group G is the only element of order 2 then, show that $a \in G$ commutes with every $x \in G$

(2) Solve $7^{1225} = x \pmod{10}$

(3) Show that $f \in S_{15}$,

where $t = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ -10 & 13 & 4 & 5 & 12 & 3 & 15 & 2 & 9 & 11 & 6 & 1 & 14 & 8 \end{bmatrix}$ is an odd permutation, Find O(f)

- (4) Show that every isomorphic image of a evelic group is cyclic
- (5) Give an example of a finite abelian group of order four which is not cyclic

https://www.hnguonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से