MEB-4710

Seat No.

M. Sc. (Sem. I) Examination

November / December - 2018

HN - 403: Physical Chemistry: Paper - III

ime: 3 Hoursl

[Total Marks: 70

astructions:

- (1) Each question carries 14 marks.
- Figures to the right indicate marks of the question.
- Answer any **two** of the following:

10

https://www.hnguonline.com

https://www.hnguonline.com

- (1) Set up and solve the Schrodinger wave equation for one-dimensional simple harmonic oscillator.
- Discuss the applications of variation method taking the example of multi electron system.
- Discuss the application of perturbation theory of helium atom.
- Answer any one of the following:

- (1) Write a note on "The rigid rotor".
- (2) Discuss the various postulates of wave mechanics.

MEB-4710]

[Contd...

https://www.hnguonline.com

https://www.hnguonline.com

any two of the following.

(1) Explain the Huckel theory of conjugated

- (2) Discuss spin angular momentum.
- (3) Note on Eigenfunctions and Eigenvalue for angular momentum operator.
- (b) Answer any one of the following:
 - (1) Discuss Pauli's exclusion principle.
 - (2) Short note Slater-Condon parameters.
- (a) Answer any two of the following:
 - (1) Define Zeroth law, first and second law of Thermodynamics.
 - (2) Explain : any one method for determination of Partial Molar quantities.
 - (3) Discuss applications of phase rule to one or three component system.
- Answer any one of the following:
 - (1) The molar volume of pure methanol is 40 cc/mole. Also the volume of a solution containing 1000 gram of water and 'n' moles of methanol is given by $V = 1000 + 35n + 0.5 n^2$ Calculation the partial molar volume for methanol for molality, m = 0 and for m = 1.
 - (2) H_2 gas at 1000°C and 300 atm pressure occupies a volume of 0.1191 dm3/mole. When the values of α are plotted Vs, pressure, the area under the curve is found to be 4.92 atm dm3/mole-1 Calculate the departure from ideal behaviour, a, the fugacity f, and the activity coefficiently for H2 at 100°C and 300 atm pressure.

-4710]

https://www.hnguonline.com

https://www.hnguonline.com

	https://www.hnguonline.com	
(a)	Answer any two of the following: (1) What is partition function? Derive an equation for rotational partition function.	10
	(2) Discuss most probable distribution.	
	(3) Explain entropy production in irreversible thermodynamics.	
(b)	Answer any one of the following:	4
(**)	(1) Calculate the rotational partition function for NH ₃ at 27°C.	•
	The three moment of inertia are:	
	$I_A = I_B = 2.78 \times 10^{-47}$ and	
	$\dot{K} = 1.38 \times 10^{-23} \text{JK}^{-1}$	
	$h = 6.62 \times 10^{-34} \text{ Js. } I_C = 4.33 \times 10^{-47} \text{ kg.}$	
	σ for NH ₃ = 3 (2) Explain : Grand Canonical and	
	Micro-canonical ensembles.	
	6.1 6.11	- 1
	wer any seven of the following: Define harmonic oscillator.	14
(1) (2)	Calculate the ionic strengths of solutions that	
(2)	contain	
	(a) 0.3 M CaCl ₂	
	(b) $0.1 \text{ M Na}_2 \text{SO}_4 + 0.2 \text{ M NaCl}$	
(3)	What is meant by activity? How it is related	
	to pressure and fugacity?	
(4)	Give the limitations of phase rule.	
(5)	Give applications of Extended Huckel Theory.	
(6)	Definition of Freedom (degree) in phase rule.	
(7)	By using Stirrling approximation calculate $ln N$, where N_A is the Avogadro's number.	
(8)	Application of Extended Huckel theory.	
(9)	Explain the terms variation theory.	
(10)		
(-4)	thermodynamics.	
	·	

https://www.hnguonline.com